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SUMMARY

A least—squares procedure adapted 60 numericsl
calculation is presented for .$he approximate solution
of the Prandtl lifting—line equation. Sufficient data
are tabulated to permit a solution of the equation by
purely numerical methods for an arbitrary symmetrical
variation of the chord and the angle of attack. In
addlition, modified procedures are formulated for the
analysis -of wings in which the spanwise variation of
the chord or angle of attack is discontinuous. ~The @
methods proposed are illustrated by explicit numerical
analyeis of rectangular wings without twist and with .
linear and.-quadratic twist, a tapered wing with rounded
tips and partial—span flagps, and a rectangular wing with
a ‘cut—out. Comparisons are. made in several cases with -

the results of other procedures. . S . ST

The computation. involved in the procedure. is en—
tirely mechanical and is conveniently carried out on a
computing machine. The accuracy attained in a solution
using the tabulated data should de comparable to the
accuracy of the given wing data in all practical cases,
while the time required is considerably less than that
reguired by more elaborate procedures, such as those of
Lotz and Betz, and only slightly greater than that Te—
quired by less exact methods, such as those of Glauert
and Tani, While the modified analysis applicable to a
wing with a discontinuous angle of attack or chord re—
quires a small amount of additicnal computation, it is
probable that the resultant accuracy in such cases could
be attalined by the Lotu procedure only after. a very
lengthy series of calculations. : e —e
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INTRODU GTION -

The distribution of 1ift over . the span of a wing.
in unifori motion is determined, according to the Prandtl
theory of the 1ifting line, as the solution of a 8ingu—
lar integro—differential equation the mathematical com—
plexities of which are such-thgt exact solut ions have
been obtained only in very special cases. While several
methods have been devised for obbtalning approximate solu—
tions to this equation, it is felt -that a new procedure
based on a method of least squares which was presented
in referonce 6 may be of practical interest,

In the usual procedures an approximation to the 1ift
function is assumed .as the sum of a finite number of ap—
propriate approximating functions with undetermined coaf—
ficlonts, after which the coefficients are deotermined in
various ways so that the liffing—~line equation is approxi-
mately satisfied, While it might be expected that tho
detormination of these paramoters would be most efficliontly
accomplished by a method of least Squares, tho only ap—
plication of such a method known %o the writer (referonce 2)
was not well adapted to numorlcal computation for aerbi—
trarily varying chord and angle of attack. _In addition,
the single case treated was that of a wing with discom—
tinuvous angle of attack, for which tho procedure as glven
in referonce 2 falled to givo satisfactory results.

The purpose of the present paper is to present p . :v
least—~squares procedure in which the major part of the
nunlerical calculation can be readily carried out on a
computing machine, and in which the amount of labor in—
volved is not dependent upon the nature of the variation
of the chord and the angle of atbtack. Since all the
previous. procsdures are notably 1nadequate for the analy-—
sis of wings with discontinuous spanwise variation of
angle of attack or chord, an explicit treatment of such
cases 1s included.

This investigation, conducted st the Massachusetts
Institute of Technology, was sponsored by, and conducted
with Tfinancial assistance from, the National Advisory
Comnittee for Aeronautics’ : ' -
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STUBOLS

- ol

Y- spanwise coordingte in units of the half span
. (y = & at the root, y =+1 at the tips)

b span

c chord

cR root chord (c{(0))

c* chord divided by root chord (c/cg)

(0 angle of atback

g dynamic pressure

1 section 1ift (per unit length along span)
* ey section 1ift coefficient (1/qc)
Y F auxiliary 1ift funection (ccz/mcR, l/qmcR)

m profile constant (de;/da)

n dimensionless constant (mep/4b)

bt
IS projected wing area QEUF‘ c{y) dy
L total 1ift <5f 1 (y) d.y)
-1

Oy, coefficient of total 1ift (L/qS)

& s . -
. o angle of attack ccrresponding to approximate 1ift

distribution
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MATRIX NOTATION

Ropresentation. of sets of linear equatibne.— In this ?'
paper a set of linear equations is represented in a con—

densed form, Thus, for example, the formal equation .
Ao 4,y
&o0 ai10 [
891 811 = &y
apa aig " a:z'

wlll be used to represent the coefficlents of three

linear eguatiocns in the two parameters A, and A,

of which the first is - o .
Baoho * Byo Ay = %o ' .

Matrixz multiplication.— A& rectangular array of P

elements is called a matrix. For the present purposes -
it will be convenient to define two types of matrix i
products, ) - o S -

Tho first type, which will be called the slar
product, is illustrated By the following example:

°o| - .00 210 Coapo . Co 10
Cy *  l&o; 811l = %1201 - C121a
co 2oz 8,z Ca2o2 Cadin

In gencral, the star product of a one—column matrix of

m elements intoe a matrix having m rows and n .8
columns will be defined as a matrix having m. rows and .-
n columns, wherein each element is tho product of theo
corrcsponding slement 1n the original m by n natrik by the d
element of the one—column matrix which lies in its row. ’ -

The definition of the dob product of wo matrices
may bo illustrated by the following exanple:
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A LT

LoImtty g o -t
536 [P0l . {800 ._,_,.?_-1 (boo oot 1301'?’02302) (booa'm"'bman"'baeam)
boy “busi € flag: ” a11 LS = RS LTRET

boa  Paa doz 212 (blo a-c>o"'b1:|.8'o b133'@:3) (bm a'10+b au"'bzz ala)

In gencral, the dot product of two rectangular matrices
having an egqual number. of rows.will ‘be defined as &
matrix wheorein the element in the 5th row and the kdh

column is the algebraic sum of all products of .eorres— . -
spnding elements in the J—th column of the first facfor -
matrix and the k—th column of the second factor matrit.'
(This product is equivalent te the conventional matrix
product of the transposé of the first matrix into the
sccond matrix,)

SOLUTION OF- THE LIFTING—LIHE EQUATION BY A METHOD

" OF LEAST SQUARES .- | T S

-

According to the lifting—line theory, the 1lift
W{y) per unit span acting on an airfoil is determined
in_ﬁcrmg of the chord - ely) and -the sngle.of attack o
aly) by tne intogro—differential eauation : .

Wy) = c*(.v)fqmc;aoc(:f) = _f g:; 37_1’;]- (1a)

and theo boundary coaditioms ~ - - - +F
1(£1) =0 v .- (1w

wherc ¥y is a spanwise coordinate’ measured from the
root in units of the half span _b/2, c*(y) is the
ratio of the chord to the root cherd,

ooy = ST - (eR)

"CR O - T

¢ . is .the.dynamig .pressure, m 1is a profile const&nt;‘

d:_G R . -
(E:f> , and p is the dimensionless constant defined B

ato =N

Toens . - JR—

by the equation R .
g X
: (5)

=
i
¢1m
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The intogral appearing in equation (1) is not a proper
intogral, but is to be asslgned its Cauchy principal
value, according %o the definition

s_;mo{f“ fﬁ} E ‘

Fy) = Bl (4)

qmoey

If the notatlon

is introduced, equation (1) can be written in the form

(y) +g_ Yar an
o*(y) mJ,dn ym

= d(y)
. (5)
CF(£1) =

The usual method of obtaining san approxinate solu—
tion to this equation consists in assuming that F(y)
can be approximated satisfactorily in the range [yl 1 .
by a finite serles of appropriate functions '

X
-
F(y) ® ) Ap 9n(¥) - ()
n=1 '
so thet equation (5) becomes
N [
Y hn 0n(r) = aly) (7)
a=1" ' '
where
n(Y) {iﬁpn dn
and in then determining the parameters A, by reguiring »
that equation (7) be a true equality at N arbitrarily .
chosen points (reference 1). This procedure thus leads

to a set of N 1linear equations
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% Ay O (:ng) =alyg)
=1 . (9)
k= 1, 2, . . . X

in the N undetermined parameters An.

A more elaborate procedure consists in determining
the paraneters by requiring that the integral of the
square of the difference between the tws sides of equa—
tion (7), over the range .[y] < 1, be a minimum (ref—
erence 25 Coon e cT T . :
N 2

1
JP , E:AﬂQn(Y)—&(y) . dy = nininum (10)
= ln=l - .

Equatinglthe partial derivatives to zero leads again to
a2 set of N 1linsar equations .

1=

1 T
_Anf o (7)on(y)ay =£ () 6(r)ay |
. ‘4al

1 -lu_.' N .o T - - j (11)
p =1, 2, .+ .. X

it

n

which. serves to deterhine the constants " An.’

In order to avold the integrations involved in
gquations (11) and reduce the approximate solution of
squation (5) to a purely nunerical process, there is
here presented a modificatlon of the least square pro—
cedure which has been used previously in connection with
other problens (reference 6)., This method consists
basicglly in approximating the integral in equation (10)
by a sum of weighted values of the integrand, so that
equation (10) is replaced by the condition:

~

¥ . - ) - _: . _
y Dk[% Aﬁ‘tbg(yk)-—a(yk)] = minimum (12)

k=1 n=1] '
where Dy is the integration coefficient associated

with the value of the integrand at the p01nt yk..

BEquations (11) are now replaced by the following set of
N linesar equaﬁlons
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X

N M _ §

Y dn X Dep(v) 0nlmd = ) Dy 0p(ridalyy)

1 k=1 k=1 (13)
p=121,2, .. . XN

rd

With the notation of the preceding section, the
coefficients of this set of equations can be written in
matrix form

“Dk on ()| o <1>n('yk)" =[x %(yk)”'@”m(y_kj)“ (14)

where the row and column indicses are k and n, re—
spectively. It follows that the coefficients in eguations
(13) can be conveniently obtained by first wrlting the

set of egquations . i '

Y A a(yi) = a(yy)

n=1 : ' _ - (15)
k=1,2, ... M

in matrix form, and by then forming the dot product of
the auxilisry natrix :

Dy én(yk)”

into both.. sides of the resultant formal eguation.

While equations (15) are of the same form as equa—
tions (9), the points Yy noOwW correspond to the weighted

ordinates in equation (12), so that the range of -k isg
arbitrary. Thus, in place of satisfying equation (7) .
at a number of points, N, equsal to the number of un—
determined parameters, the present procedure gsatisfies
this equation as nearly as possible at an arbitrary
nunber of points, M.

Since equations (13) are homogeneous in the weight—
ing coefficients Dy, these coefficients may be chosen
a8 any coanvenient multiple of the actual integration
coefficlents. Also, it may be desirable in certain
cases to interpret equation (12) otherwise than as an
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approximation to equation (10). That. is, in place of _
requiring that the mean sauare of the difference between
the two sides of the lifting—-line equation be a minimum,

it may be desirable to require ‘that the equation be more
nearly satisfied at some points than at others. The -
coefficients Dy are then of the nature of "influence
cooffichonts! and may be determined by magnifying cer—

tain of the integration coefficients in propoertion to

the dogree of satisfaction desired ak: corresponding in—
tervals along the Span.. - . -

If the compufsed values 'of the parameters are sub—
stituted in the left—hand sides of equations. (15) the
values of the angle of attack & corresponding to the
approximate 1ift distribution specified by equation (6)
are deotermined at - M points along the span. A compari—
son of this angle—of—attack distribution with the pre—
scribed distribution o will give an indicatian of the
degrec of approximatlon attained in the solutlon. -

OUTLINE OF THE PROCGEDURE FOR NUMERICAL SOLUTION

OF THE EQU.A.TIOﬁ. S S

e

In this section a procedure involving a fivebterm
approximatlon to F(y) 1s-explicitly developad for the
case when ~cly) - and oly) are symmetrical with respect
to tho wing root. An analogous procedure caxn be developed
for the trocatment of the case of an anti—symmetrical
angle of attack. . -

It is convenient to choosa the approximating func—
tions. @, of equation {6) so that the functions defined

by uhO integrals = ' ST CT e e
Ydeg an e

have a simple analytical expr6351on and are regular in

the neighborhood of the wing tips (y = £1). Such fune—
tions are, in general, characterized by the property
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' -
o (y) ~ (const-w ) (1—y®) 2

ey (16)
Y

where n 1s a positive integer. In addition, .the
functions =¢ﬁ\ should be of & form readily adaptable

to the appfbxﬂmation of the function ¥, the charﬁcter—
istic behavior of which usually is known,

In the present procedure an approximation to F(y)
is assumed in the form

) + /1-yR —_
F(y) #B:y®log £TG£TI—> + Jl—y=

Cmeaat

n=¢

o With the exception of the first term, the approxi-
mating functions are conventional ones employed else—
where, The coefficient of B, which is of the form
required by equation (16), was originally chosen for use
in cases when al{y) has a discontinuous first derivative
at tho root (e.g., in the case of a symmetrically linear
angle of attack), since the contridbution of this term %o
the integral representing the induced angle of attack,

1 w
[ [aee ()] 8 - et

- Inl y—n

has a discontinuous derivative at the root (y=o0), while
the function itself has a continuous derivative st this
point, The function was, however, retained for use in
the morc general case since it compleéements the other
approximating functions, being intermediate in bshavior
bebwssn thd funotions V1—y® and y2J1-y2. (See
figure 1.) ]

With the approximation of equation (17) the lifting—
line equation (5) becomes

3 .
Y A v (17)
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——(——F{By log <—-t——1——f + A~ 1l— y2 [A°+A2y +.A.4 ¥ +A‘B y]}

R A WY I W A S R
| _‘f.A@<y_Ey__. )}

A L - e .

eacc( ¥) Irlst L (-18.)_

]

For the approximste integration -indicated in -equation
(11) nine points Ty 8are chosen, equally spaced over

the interval O<yEIly so that yy = k/8, - )

%k =0,1,'2, « .-. 8, - If equatien (18) 1is evaluated at
these points, nine linear equations in the flve parame—
‘ters. are. obtalned the cnefficients ef which are written

fn matrix form in equation (19).



+ B

12
1
c 1/ 8
1
C'(1745
1
c*(a/B)
1
c*(1/2)

c*(s/8

i

—1.00000
. 60750
~.21860

. 17810

. 57080

.96350
1,365619
1,74889

2.14159
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B

00000
04326
«128897
«23018
. 32824
.40897
« 44739

«40452

c¥(y)

Lo

1.00000
1.,00000
1.00000
i1,00000
1.00000
1.00000
1.00000
1.00000

1.00000

i
55,

Ao

1.00000

.592216

.96825

92702

.86602

.78062

66144

- +»48412

c*(y)

) [«/E—"?]Fl

Az
—-.50000
—-.453123
—.31250
—(O7BE2
—5g85000

.87188
11187560
1.79688

2.80000

Ag

—.12500
—.14722
—.19922
~, 23706
—.18750

. 05200

.61328
1.65747%7

3.37500

4z

. 00000

.01550
.06052
.13036
. 21651
30493
. 37206

. 37066
E=q
c*(y)

Ag
—.06250
—.06894
—. 09309
—~.14521
—.20312
—-.17323

.18140
1.34811

4,06250

y=1

Ag
.OOOOO.
« 00024
» 00378
.01833
« 08413
«11911

.20928

| +28378

55
c*(y))

ol o)

a{1/8)
a(1/4)
a(3/8)
al2/2)
al(5/8)
al 3/4)
al 7/8)
af 1)

=l

)
. 00000
. 00000
. 00024
. 00268
.01353‘:
. 04653 1
J11772

.21727‘

A

(19)
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The elements in the last row 6f the Becond matrix are
21l zeros, unless the chord tapers to zero at the tips
‘at least as rapidly as. Jie ¥y2. 1In case the wing ap—
proximates an elllptical plan form near the Hips, all
these " ¢lements .have an equal non—zero va;ue which can
be determined in a-simple manner. If a ‘constant. A is
determined so that, in the immediate neéighborhood of the
tips, o T ’ '
ely)
- én

K J1—y% o , (20}
. . “ " . .

then these elements are to be assigned the value 1/X.
While cases in which the chord tapers to zero more.
rapidly than - ~/1—y®  involve certain mathematical dif—
ficulties, it is probable that for wings with rounded
tips the error. introduced Dby using a tip approximatlon
of the form given inm equation (20) would not be great.

If now the Values of the chord. and angle of attack
are known at the nine points..along the span, and 1f u
is prescribed, eguation (19) can be put in the form

. S T o
b'o aco azg ------- aeo L@o
1

bl 84951 Bpqeesen s &gt tCIrl
H 1 ey e st e ” v - ;T i

by 28z Bon.iivees Bga |l = 0o (21)
. - ' = - L 4 L
» " ..A_ - >

[ ] i d » - -

2 [N . P T - -
LE aos ags ags’ GBJ

where, for exampls, ) :
' e OAB26 | T -

bo=—p bl=m —.60730n ' .

- (22)
aaa='L2§2§§""31250“ ce i a6g=[—l—zi] + 4.06250

y=1
sg -0 T o, L T T
e = a,(k/s) (23)
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In accordance with the results of the preceding
the coefficients of the linear equations (13)
are obtalned by forming the dot product of an suxiliary ~

section,

matrix-into both sides of formal equation (21).

This

guxiliary matrix is formed by multiplying the elements

of the k

poin?d Vi

—th

in equation (12),

Dy

row of the left—hand matrix of equation .

(21) by the weighting coefficient assoclated with

If it is required that the

mean square of the difference between the two sides of

the lifting—line equation be as small as possible

that equation (12) is to appreximate equation (105,
these coefficlients are to be proportional to a set of
integration coefficients, The best results have been

obtained, in genersal,

Do

1

De

80

if coefficients proportional to
those of Simpson!s rule are used (for a detalled dis—
-cussion, see refeérence 6, pp. 319-323), so that

o
[11]
"

.".::D7

=]
[ ]
i

'QG

1/2

= 2

= 1

and the auxiliary matrix is.ef the form

If the dot product of matrix (25) into both sides

#bo

b, . 2ao0

%500

%aqa_

1
R8z0

285y seven

1
.aaz > e @

.
. w

L N S

- #aeo

u.-_-rp’- B.--

&2

L ]

L)
_%aga --n'-n-ln-' %&QB

) Baél

(24) .

(25)

of equation (21) 1§ formed, the coefficients of a set of
five linear equations in the five parameters

are obtained the solution of which,

B, Ao,-on.AG

In connection with
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equation (17}, determines the 1ift distrlbution over the
span of the wing. 'The amount of numerical work involved
is considerably reduced if use is made of the fact thal,
as can be shown, the matrix of coefficients in the final
set of egquations is symmetrlcal w1th respect %o its

prlncipal dlagonal L T

The data required to compute ﬁpe values of F(y)
at nine points are tabulated in the second matrix of
equation (19) (if the elements of the last row are re—
placed by .zeros). Thus, for -example];

F(0) - ]
F(1/8) = 0.04326B 4 0.992164, + 001550 A_+ 0,00024 A, b (26)
2 - T

F(L) ,
With the auxiliary function F(y) known, the 1ift dis—
tribution I(y) is determined from the equabion
(3) = B g oy F(y)
and the section 1ift coefficient cj{y) f£sllews froem
the egquation o ) k__ S
=M By
c(¥)

;z(y)

o

If L %6 the total 11ft ascting on -the wing and §
is the projécted area of the wing, the cocefficient of
total 1ift, Cp, defined by the relatlonship : S

L

CL = —— - - : R IS, O T

qS

is given by the formula _ ) - .

‘bz.- 1 - .‘. . * — —

o= 5 [ atore
w—-i *

or, with the approximation of equation (17)
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) ' -5 1l 1 1 5 -
5= P el ey . - 4
01, nu% [33+4°+_4A3+_8.Af; v Ag (27)

An indication as to the accuracy of the solution
is obtained if the waluses of the angle of attack «
given by the left—hand sides of the sgquations repre—
sented by formal equation (21) are compared with the
prescribed values of o} for example,

—

Tpe = D B+ agyp Ag * . . .+ agy Agmag (28)

It mey be mentioned that in place of using the ap—
proximation of equation (17), the lifting—line eqguatien
may be first transformed by the substitubion

y = — cos @ ogb g

after which, if an approximation to the function B(y)
is aagumed of the form ’

F(y)~B(cos®8)log| l-*isfn@) ZAn s8in n @ (17a)
tcos 0]

equatlon (18) is replaced by

1 1 + sin 6:} }
S — 2 An si
c*(cos 8) {B (cos G)J.og( |cos 8} Z n sin n 8

+ W {:B(n'coa 8f —1) +-Sﬂn Ay E§%523£ # o (cos 8) (18a)

and the present least—squares procedure is again applicable,

In the preceding 4svelopments it was assumed that
the profile constanty m does no% vary along the wing
spani that is, that parallsl chord sections of the wing
are geometrically similar. If this ie not the case, the
effect of varying H can be taken into account if in
equation (5) and the subsequent equations the function
¢*(y) is replaced by the function

Ei{> e¥(y)



'NACA Technieal Note No. 925 17

and the definitions of. the conetant. p "and the func—
tion ¥(y) are modified so as to read

. m o . - ..
) = _ vy (4a)

My
T ¢ mn Cr

where mp 1s the value of 'm at the root.

EXPLICIT SOLUTION FQR A REGTANGULAR WING

In order to illustrate the procedurs of the pre—
ceding section, a wing of rectangular plan form and as—

pect Tatio- %} = m (&6) is considered In this case,
equatlons (2) and (3) becomeé. ~ . . o
‘:-;... ':- . . c*(y).: l N RN . . o (29) B
and T sk
e R ¢13)

dach element of the 1eft—hand matrlx of equation
(21) is thus the sum of the corresponding element of the
second matrix of equation (19) and one—fourth the corre—
eponding element . of the third matrix of that equation, so
that equation (21) becomes -

B 4 - Ap - Lo
—-.25000 1,25000 —,12500 —,03125 —,01562 §a,
—.10886 = 1.,24216  —,09778 —,08656 —.QL723 oy
—-.07531  1.21825 —,01761 —.04602 —.02304 Qg
.27470 ° 1.17702  -,11083 —.04093 —,03372 oz
.47194 ' '1,11602° . .27901  .00725 —.,03725§ = la,
' .64985  1,03062: . ,47290 - .18211 . .00322 o
. 78644 «91144 .66893 , 36260 .16307 %e
(84175 « 73412 ,81988 .69815 ,55430 %7
.53540 .25000 .62500 .843756  1.01562 o

(31)
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The aguxiliary matrix:'is now formeéd by multiplying

the elements in the
by the weighting coefficient

(24).

k—th

Dk,

row of the left—~hgnd matrix
a8 given in equation

If the dot product of this matrix into both sides

of equation (31) 1e taken, the following five linear
equations are obtalned:

B Ao CAg As A
3.47075  4.19825 2,91636 1.84739 1,30533 8,
4.19826 13.43179 3.09615 1.47864  .89447 ay
8,91636  3,09615 2.56410 1.77884 1.32531) = las| . (32)
1.84739  1.47864 1,77884 1.50586 1,26747 24
1.%50583  ,89447 _1.,32631 1,26747  1.16176 as
whers
—-.12500 ,68600 =—,06250 =—,01562 --,00781 %o
—.21718 2.48431 -—,19556 —.07312 —.03446 oy
.07531 1.,21825 ~,01761 —.04602 . —,02304 %g
.54940 2,35405  ,22166 —,08189 —,06745 as
47194 1.11602 . 27901 , 007256 .—,03725 G4 (33)
1.2996898. '2,06125  ,94580  ,26423 ,00845 xp
 .78644  ,91144  ,66893 .36260 ,16307 o
168349 1.46825 1.63975 1,.39630 1.10860 o7
.28770  ,12500  ,31250  ,42188  .50781 %g

It may be remarked that the calculation of each
element in equation {32) involves only a single continu—
ous operation oh & computing machine. ¥or example, the
coefficient of A5 in the second row of squation (32)
was obtained as the algebraic sum of preducts of corre—
sponding elements of the second column of the. suxiliary
matrix (the first matrix on the right—hand side of
equation (33)) and the ¢third column of the left—hand
matrix of equation (81):

—(. eﬂsoo)( 12500) — (2. 48431)( 09778) - (1 21835)(. 01751)+ cern
- o + (.12500)(. szsoo) = '3,09615
Since the matrix on the left—hand siie of.eduﬁﬁion (32)

is gymmetrical, it was not necessary to compute the
elemonts below ivs principal diagonal.
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The solution of equabtions (32) is also conveniently
carried out on a compubting machine, the process being
considerably shortened if account is taken of the symme—
try in %the matrix of cosfficients. (See, for example,
referenco 5. )

In the case of a uniform angle of attack, for which
a(y) = ap = constant, the right—hand matrix of equation
(32) as determined from equation (33), is found %o be

- 4£,79185|
H12.363567
i 3.7919¢9
'2.23562
1.61592

and the solution of equations (32) then gives

B = —0.25469 ap Lo = 0.82881 ap Az = 0.98119 og

=y

Ay = %1.32373 ap . Ag = 1.36382 ag

The coofficient ef total 1ift O 1is determined by
equation (27), : . :

.0y = 0.73065 # ap T - (35)

In table 1 and figure 2(a) the asuxiliary 1ift func—
tion F(y) (computed from equations (26)) is" compared
with the corresponding solution given, by Glauert (refer—
ence 1), This solution was obtained.by assuming a four—
term approximation to F(y) of the form given in eguation
(l?a)-(omitting the first term) .and by then satisfying
the lifting—line equatlion exactly at four points, not in—
cluding the wing tip. The values of the left—hand slde
of the basic equation (5) (computed from equations (19))
are .corpared with .fthe corresponding values determined
from the Glauert selution in table 2. It is seen that
the Glauert solution satisfies the lifting line equation
extremely well except in the. immediate viecinity of the
wing - tip where a large deviation occcurs, while for the
predent solution the equation is reasonably well satis—
fied alopg the span. The two 1ift distributions agree
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very closely, however, except near the %tip of the wing,
and the Glauert 1lift: ceefficient, Oy = 0.729 n an, is

nearly identical with the result of equation (35). -

In the case of a symmetrically linesr angle of attack,
for which aly) = amlyj,-bthe right—hand matrix of equa—
tion (32) is found to be Co

3.57658
5.43746
ap |/3.03389
2.08302
1.55018
and equations (32) give
B = 0.11229 ag Ao = 0.16731 ap . Ay = 1.25057mﬁ1
- . .\
Ay = —1.67588 ap he = 1.48110 -j{%”

The coefficient of total 1ift 1is then

O = 0.33270 m ap

The variation of the function F(y) is presented '
in table § and figure 2(Db) in c omparison with the
Glaunert solution, while in table 2 the left—hand side of
dquation (5) is evaluated for the two solutions and com—
pared with the prescribed right—hand side. In this casse
the actual angle of—attack o -<corresponding to the
Glavert solution deviates appreclably from the prescribod
angle of ‘attack o both near the reoot (y = 0) and near )
the tip (y = 1).. The root deviation, which ie due to o
the fact -that the curve representing the function aly)
has a diescontinuous derivative at .y = O, is decresasged
in the present solution by the presence of the first ternm
in the approximation of equ&tion_(l?), and the tip devia—
tion for the present. selution is alse lees pronounced,
Corresponding differences occur between the two lift dis—
tributions, and the Glauert 1ift coefficient, OCp=0.320mam,

differs from the result of equatien (37) by about 4 percont.
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In the case of a quadratic angle of attack for
which a(y) = apy2, the- rtght—hand matriz of equation

(32) takes. the form . _

Y e Allas0Bes ||
: _|IB.29199
, mm 2.41043
RO 1784381
~{lT.4%008 1

The solution of equation (32) is found -.-to be

B = —0,20624 ay Ao = 0.06665 ap A4, = ;.29613c§¥-;°
U R 5 ¢ )

Ay = —1,00759 ang . Ae = 1,13356 ap ,

-

and equation (27) gives
GL = 0.20607 it anp
Mhe ‘1ift distribution corresponding™to this solu—
tion is presented in table 1 and figure 2(c¢) while in
table 2 the functions o and o are compared. , This
problenr was not considered by Glauert. The 1ift dis—
tribution in this case is more nearly concentrated at
the wing tip end the maximum. 1ift value is only about
42 percent of the naximunm value for the corresponding
wing without twist. Also, a higher degree of approxi—
mation is indicated by the agreement of the two sides
of the 1ifting—line equation. ‘- S .

T,

MOD IFIED PROCEDURE FOR WINGS WITH DISCONTINUOUS

ANGLE OF ATTACK

It is known that at a point of discontinuity in the
angle of attack the lift—distribution curve has an in—
finite derivative, so that an approximation of the type
used in equation (17) could not be expected to give an
accurate result, In such & case, in order that the righi—
and left—hand sides of equation (5) have-the same dis—
conbtinuity at & point, the function F(y) must be con—
tinuous but must have the property that the integral
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T . . ’
H g0 (58)

has the same discontinuity as the angle of attack, &.

As can be verified in an elementary manner, the
function Y.

{

1 -+J1— 2 J1-
Taly) = <y-a>1og< e ) (55)
0 Ty—al
satisfies the equation
—.—']ﬂ—'-cos—__za : ~l gy <a
L {7 dlg an - _ I (ed)
we -1 -&n. y—m . . : C,
t ' 'y o l - -3';- cos™tg a<y&1l

and has the cerrrect behavior at the tips, since

I"a(-y) "ﬁ*/l"f""*/_.lfy‘f R et 1

L2

P

Thus the integral

I" cdn 4
B .‘L_& gn_ -
i J€ _ @ﬂ L¥y-n S t4)

is piecewise constant in xhe~interval [y[hs 1 . and has
a jJump of magnitude mwp  at the point y=a. Suppose
that of(y) is continuous except for finite Jumps of
magnitude Jn at the points y = ap.

a(ant)~alan—)=Jg (42)
Then, if the function

B(y) = L Ta Tap 4¥) 0 (as)

T

is defined, it follows that the expression
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Do

T dP' éﬁ.‘? ST
caly) = ~dn y-m, ((44)
.:_I,. 2 ot . _."_:.__ - __‘ o e . LR ',._:

is continuous.

This fact suggests the following procedure for
solving. the lifting-lipe equabtidn: (5?

‘an approximatibh’té the 1ift &istribution function is
assuned of the form

E(y) = Bl =W (337 T )
- Y - o T };-i;_ l ;.

where P .is- . defiaba by equation (43) "and ~Fo . - is givé
by the right—hand side of equation (17), then equation

in such cases. If.

(5) can be written o e} .f et BT B w2
d‘F et V. L
o(Y) _~'f‘ o. 9n =akeF)T D (48
*(y) an y—n .
where © 7 e o gTe s Foire ol
P(y) L
’ c*(y) dn y—n _..-(__ aE

Equation (46)" is formally equivalent to equation (5) if
o(y) is replaced. by a*(y) ‘and, since o*(y) is con—
tinuous, the solution can be carried out as outlined in
the preceding sections. . S S
In calculating the total 11ift coefficient 1, the

value of the intqgral . N

-I‘f

= .
T . _i « ;. . ’ ---_.j._' c T i_-

T iy Sote i :
. JFII’ (y)dw'— j.%§«/l o (%33._

Ttk

is nesded.
'’ As an example, suppose bhat the'ailerbn deflectlon
of a wing is such that

N PVRLES

o} —l1 <€y < -a
a.(y) = 1 -8 Ly < 8 - (49)

0 a<y < 1

-~

._‘: o . N e
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In this case equation (43) becomes

Ply) = A {Palp- r(o)

or

: Y -y -0 o A 1—aes v 2
P(y) = 'l —(ZY‘—&) log ["l 27 = 4 ] +(y+a)log[l+ay' i-a =y ]}
- T |- S |+ a]

| (50)
L¥go, using equation (40), it is found that
1
i & an  _ {f alg an [ &T-a dn}
TJa o 4n y-n o m® dn y=n Ja dn y-n)
-—'E.[_—- —j'n— cos a_] + [- TT- (m—cos™ "ajﬁ ~1< y<—a
=< == % cos”tal] + [1 — (1'r-- cos™a)l —a<y<a
—-[1——3:,— cos gl + [1 - —1-1- (n—-cos ‘a)] a<y <1
‘w LY AP an L S . i
?f_‘l dn y-n 7 col T
r 2 "
. ® cosTta-—1 -l y<-—a
= 2 —1 -
= < = tes T a a€sy < a
2 cos™* a—1 a<y< 1
LT
2 -2
= a(y) —{(1~ = cos " .a (B61)
Thus, finally, equation (47) gives
P(y) 2 -1 -
* = — - =
a (y) : W 1. - ‘GO.B‘ a (52)
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EXPLICIT SOLUTION: FOR A TAPERED WING WITH ROUNDED TIPS

AND PARTIAL—SPAN FLAPS

As an illustration of the modified procedurs, a
wing analyzed in reference 4 is now considered. The
variation of the chord ratio: eoly)/cy is represented

in figure 3, while the following additional numer ical
data are. given: '

b= 0.1939 G- =100 7 (s3)

In the immedigte’ nelghborhood of the wing tips, 1t is
found that, approximately,

- — . L

c*(y) B 1. 64'»/1—;;7' y —>*+1 )
end it follows from eguation (20) that
A= 1.64 . (54)

An’ angle of attack of 1 radlan from O to Q. 489 “ahd 0 from
0.489 to-1 is pre5cr1bed, so that, in the notatlon of ‘the
example df the preceding section, o

& = 0.489 7 (s5)

The equation to be solved is then

FO(Y) dFo dﬂ o
c*(y) f 5 = (¥) (56)
wWhere )
Foly) = B(y) — F(y) (57)

and P(y) and a*(y) are defined in equations (50) and
(52). . . . -
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c*(Y) y

P(y)

and

a*(y)

92b

at the nine points considered in table 3.

are tabulated

If the operations indicated in equation (19) (where
a*) are carried out, squation (21)

a 1is

replaced by

takes the form

B

—. 07040

.10621

31748
.548823
L7796
.97608
1.,05476
1.02073

.Ao

1,19190
1.25021
1.29847
1.3328b
1.,34658
1.32734
1.256020
1.056256

»80166

Az

-.09596
-,07042
.00930
14545
+ 33665
57247
+82318
1,00377
1.,08951

A,

—.02398
—.02800
-, 03391

—.03619
.18323
45254
«82367

1.26742

Ag

—.01199
~+01323
-,01759
—.02468
-, 03084
. 03444
. 22316
64496
1.38935

1.85269
1.94784
1.94088
1.76667
1.09Db23

.45026

. 09273
—.1?629
—.32527

The coefficients of the final set of linear equations,

obtained by taking the dot product of the auxlililary maetrix
defined in equation (25) into both sides of eguation (58),

are then found,

B.- A,
5.45683 7.35230
7.35230 18,51243
4.66690 5,7183%7
3.11236 3,14707
2.31514 2.12795

and the soclution

B = 4,20498

Az

4,66690
5.71837
4,11195
2.92894

2.26282

Ao =

Ay = 6,.24691

As

3.11236
3.14707
2.92894

2.42110

2.05002

1.,40506

Ag

2,31514
2.12795
2.26282
2.05002
1,85166

]

1.76261

15.54154

.62091

—.51871
—.6Q723

of the corresponding set of equations is

Ay = —9.94467

Ag = —~1,96339

In table 4 and figure 4 the suxiliary 1i1ft function
F(y), determined by the equation

My) =

P(y) — Foly)

(Be&

\
7

(59)

(60)

ls presented in comparison with a solution given by Pearson

(reference 4).

This solution was obtained by using a ten—
term series of the type given in equation (17a) (omitting
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the Tirst term) and determining the parsmeters by a
method given by Miss Lotz (reference 3). For further
comparison there is included in. figure 4 a solution ob—
tained by the present least—squares procedure with an
approximation of the type of equation (17), that is,
without using the additional approximating function
P(y). While the Pearson solution agrees closely with
the present solution over a large part of the span, it
appears that, even with & ten—ferm approximaticn, the
correct behavior of the 1&ft curve cannot be satisfacto—
rily approximated near the end of the flap except by the
use of a term similar to the functlion F. The values

of the angle of attack corresponding to the present solu—
tion and to the Pearson solution are compared with the
prescribed values of « in table 5 and figure 5.

MODIFIED PROCEDURE FOR WINGS WITH DISCONTINUOQOUS

CEORD VARIATION

Suppose that the angle of attack a(y) is continuous
and that the chord c{y) is continuous except for finite
jumps at the points ¥ = ap. Then the fumction F(y)Y/c*(y)
has corresponding discontinuities of magnitude —7YZFF(ayn)
where . . - :

‘Yn =—

" 11 }_ e*ant)—c*an—)
[c*(an+) c*(an—)] c*(an+)e*( an—) psl)

Hence, since o 1is continuous, the left—hand side of
equation (5) must be continuous and the function

1
B ¢4 4F _dn. .. -
wJ ,4n y-n

must have discontinuities of magnitude -+YnF(an) "at the
points y = ay. . _ , S s

If the function F(y) is written in the form

Fly) = F (¥y) - Qty) : | (62)
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where LT . : ’ P Tai

Ay) = =

T, .Knlﬂén(y), ) __(gs?

:f\/j

and T, (y) ts defined by equation (39), the constants
Kn ocan Do determined so that the left—hand side of equa—

tion (5) is continuons and consequently the functisn
Fi(y) has a finite derivetive inside the interval |yi<1.

For, according to equation (40), if equation (62) is in—
troduced into eguation (5) the left—hand side of the re—
sulting equation has, ot each point ¥y = ap, a discontinuity

of magnitude. _
. | _
——Vm{Fl(am)— vy T Kn ffan(‘_im_)} —Ep

Fauuy
n .

It follows that the discontinuities will disappear if the
constants Xy satisfy the equations

N - (64)
m =1, 2, 3, ...

where . ’ - L -
o, m# n
Smn'FJ’_- . o - (65)

The constants K, are_ thus determined from equation
(64) as linear combinations of the values of P.(y) at

the points of: discohiinuity.

Jquation (B) can now be written in the form

Fuly) B [raRy an  Taly) +~L*;.J['1B'd“] - wly)  (86)
c*(y)  Tda odn y-m o Le*(y)  wdg dn oy
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Since the function F,(y) has a finite derivative inside

the interval" frl <1, ap;épp}oxiﬁétian to F,(y) can be

assumed in the ferm given by equation (17) and the term
in brackets in equation (66) becomes a known linear combi-—
nation of the parameters B and Aan‘ If this term is

evaliiatdd at the points ¥y, with the help of equation
(40) and if the sé% .of coefficlents sf B and Ay, in

the resultant expressions is written as & matrix, the

matrix equation replacing equation (21) is obtained by
subtracting this matrix from the left—hand side of equa—
tion (19). The least—squares procedure cgan then be ap—
plied as before.

As an example, suppose that the cherd variation of a
symmetrical wing has discontinuities of egual magritude
and opposite sign at the points y = *xa and write

v = c*(at+) — c*(a—) - c*{—at) — c* (—a—) (67)

c*(at) c*(a—) ~ e*(—at) c*(—a—)

Then equation (éa& becemes
y) = rrlu [K—a —a(Y) + Kg Tg (Y):] (68)

Also, since F(y) ..is an even function of ¥y and since

T (e) =T_,(~a) =

(69)
Fyl=a) .= =T'_,(a) = 22 log a ‘
equation (64) becomes L D
— T K g -%_;WalogaKa=—nu'\'F:1(a)
(70)

—~2Ya log 8 Rmag — 1T Kag = g p 'YFl(a)

so that
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. | Y
K, = —E_, = Tu — P, (a) (71)

2 Ya log a — mwu

Thus equation (68) becomes

o ¥
Ay) = — T2l ey p b e Y EE) ey (g
"2 Ya log a—mwu L R T —2 Ya loga

where P(y) is defined by equation (50) and the in—
tegral equation (66) can be written in the form

—_—— — — B{y) P, (&) = aly) (73)
c*(y) wd,; dn y-m

. (y) uf ar, dn

v P(y)
p(y) = e (27 ff } (74)
e — 2 Ya log a “c*(y) nYy, dn y - n

EXPLICIT SOLUTION FOR A RECTANGULAR WING WITE A CUT-OUT

As an illustration of the procedure of the preceding
section, the effect of a rectangular cut—out on the 1ift
distribution over a rectangular wing with an original

b
aspect ratio of magnitude i m without cut—out is
analyzed, The length of the cut—out is taken to bs one—
quarter of the span and the width to be one—gquarter of
the chord (fig., 6), In this case there follows

= B
Y
-1
T4 (75)
1, Iyl <3
c*(Y) = 4 1 <1
3 7 < ly] <

and equation (67) gives
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. _
Y= . (76)

Fron equation (50)

0 B ) e [P AT

1*1‘7"“‘/3_"‘/1—:%
R

and from equatlon (51),

) . o
2 —1y el
T cos <:l> -iyl <'4

dﬂ y—n
- 1)
_“2__ cos l(T_)-_l’

If F.(y) 1is assumed in the form given by equation (17),

bl

< [v]<

there follows e

~ e

F,(a) = 7, (%_) = 0.12879B + 0.9682540 + 0,060524,

+ 0.0037844 + 0,000244¢

The function PB(y) of equation (74) 1is evaluated at
the nine printe considered in table 6,

The nine linear equations involved in the least—
squares procedure are to be obtained by evaluating (73)
at the nine points yir = k/8, k=20, 1,2, ... 8..

With the approximation of equatioﬁ'(l77:“the'matrix of
gcoefficients of the unknown parameters B and Agn in

this set of equabtions, c0rresponding to. the ' left—hand
side of equation (21), is obtained as the difference be—
tween two matrices, the first of which is given directly
by the left—hand side of equation (19). In the second
matrlt, which represents the coeffioients'of the values
of the third term on the left—hand side of equatien (73),
the elements in the k~th row are thé preducts of the
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. coefficients of the paramcters.in equation (79) by the

quantity

B(Yk)-

The coefficients of the required nine egquations are
thus found. in the form

B Ao Aa Ay Ag
—24490 .75651 . —,12069 —,02512 —,01182 1
—,12560 , 76682 —,09526 —,02897 —~,013Q3 1
,04424 .82172  —,01896 —,03488 —., 01730 1

.l9912 .83092 .07988 —.03090 —,02530 1
.35128 .81698 . 20800 .00536 —.,02794 1 (80)
.48752 L 77392 . 35474 . 09908 .00242 1
.59186 .698786 .50264 27201 ,12231 1
63452 - ,574686 61642 .52371 L41573 1
40518 . .31474 ;, 47045 63292 76172 1

The coofficients of the final set of linear equations

are then found,

by taking the dot product of the auxiliar

matrix previously defined into both sides of equation (80

:B l . AO Ag .A.4 A'S -
1.97915 2,30991 1.66370 1.04882 .74071 3.45863
2.30991 6.556%1 1.75463 .88374 .54525 8.,71573
1.66370 1,75463 1,45675 1.00542 .7485% 2.77811
1.04882 88374 1.00542 .84761v- (71317 1.67224

.74070 +545235 . 74857 71317 .65352

1.21165

and the solution of this get of equations l1ls determined,

B = —1,45207 Ao = 1.29708 A, = 2.59819%-
" ' (82)

Ay = =2.38087 Ag = 2.03971

In table S\ahd figure 6 of the auxiliary lift functioen

y) ='mcR ¢, given Dby the. expression

w.u Y F, (a}
nTp—2Ya log a

P(y) (83)

Fly) = Fily)—

¥ 1 . - e . -
My) = — ¢y are presented numerlcally
c*(y) m ' -

and graphically. For the purpose of comparison there is

and the funcition
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included in figure 6 a curve representing the wariation

Sf the function %% cy for the same wing without cuteoud,

as deternined in a preceding section.
CONCLUSION -

The explicit procedure given in this paper, using a
five—tern approximation and a nine—point weighting systen,
should give results with & degree of accuracy conmpédrabls
to the accuracy of nmeasurement of the physical data of
the wing in all practical cases. More nearly exact solu—
tione could be obtained by retaining a gresater number of
terns or by using a more elaborate weighting systen.

Wrile the present method is not a method of successive
approximations, an -indication of the accuracy attained can
be found in the followlng two ways: .

1, As mentioned in the text, if the computed values
of the parameters specifying the 1ift function. F(y)
are substituted in the left—hand sides of the nine linear
equations represented by fermal equation (21) the re—
sultant values of the angle of attack corresponding to
the function P can be compared with the corresponding
prescribed values of the angle of attack.

2. It can be shown that if the last term in the ap—
proximation to the function F(y) 1s not retained, the
final set of four linear equations given Dby the least—
squares procedure for the determination of the four re—
maining parameters is obtained from the corresponding
set of five equations in the origingl five paramsters by
deleting the coefficients of Ag and omitting the last
equation. If the resultant set of equations is solved,
a comparison of the 1ift distributions corrsesponding to
the four—term and five—term approximations will afford _
an estimate of the effect of retaining additional fterms.

The complets solution of g problem, including the
tabulation of values of the functions P(y) and o(y),
can be carried out in less than twe hours by a competent
computing-machine operator.

Massachusetts Institute of Technology,
Gambrldge, Mass., February 1043.
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TABLE 1.— LIFT DISTRIBUTIONS FOR RECTANGULAR WING (%% = ¥>
l .
a=— c1(y) .
mCLT 1 y - . .
¥ Present #olution Glauerf solution
& = anp o .= ambd o = dﬁyg. o = ap o = apfy]
0 0.8288 - 0.1673 0.06686 0.832 | 0.132 .
.125 .8262 .+1898 .Q757. .830 .157
.250 " .82438 ..3462 .1076 .822 .222
.375 .8169 CLe 3171 .1562 .808 « 307
.500 .7932 .» 3820 .2121 .786 . 385
.625 . 7478 4272 /2686 7537 . 435
.750 .6828 . 4438 . 3236 .695 451
.875 .5826 .4362 .3567 .577 .421
.9325 .4736 .3760 . 32335 .450 . 355
1 0 o 0 0 o

TABLE 2,— COMPARISON OF ANGLE OF ATTACK

& OCORRESPONDING TO

THE LIFT DISTRIBUTIONS OF TABLE 1 YITH PRESGﬁIBED'

ANGLE OF ATTACK «

o = amp i o = aply] @ = G v=e
A < tafds ] G
Present |Gkauert \ﬁfwu Present |Glauert " Present
golution éélﬁtiéd. . solution}Eolution solution
0 6.997 ’l.OQU i.0ll 0.054 |0.000 |[0.500j —0.002 {0
«125 .986 {*1.000 {1.0 .109 . 058 .125 . 004 .0186
. 250 1.003 ] 1.000 |1.0 . 233 .196 . 250 . 065 .062
.375 1.022 | 1.003 1.0 . 385 .376 .375 .159 . 141
.500 1.018 .995 |1.0 521 .544 .500 . 265 . 2560
.625 .982 .995 (1.0 .620 .846 .625 3786 .391
. 750 .954 | 1,005 1.0 . 711 . 728 . 750 .526 .562
.875 1.030|1.020 |1.0 .894 .851 | .876 790 . 766
1. .9582 .92 1.0 974 .861 {1, .962 1.
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WABLE 3.— JAUXILIARY DATA FOR .TAPERED WING

¥ e*y) | oly P(¥) a*(y)
0 1. 1.0 2.17796 1.85269
.128 .9375 1.0 2.13103 1.94784
.250 .8750 1.0 1.98288 1.94088
.375 .8125 1.9 1.69962 | 1.76657
,500" L7500 0 1, 06538 1.09523
.625" .6875 0 . 54692 . 47025
.750 .6250 0 . 26128 .09278
.875 || .5625 0 , 08380 —.17629
1. "1 o 0 0 —. 32527
TABLE

4.— LIFT DISTRIBUTION FOR TAPERED WING

Present solution

Pearson solution

C

¥ mogp C y W g c1

0. 0.%7729 0. 0.7576
.1250 L7077 .1564 ,7033
.2500 .6588 .3090 .6535
3750 .B8162 . 4540 L4451
L4375  .B463 . 4890 ,3589
.5000 , 3057 .5225 . 2743
.5625 J1619 - .5878 .1460
.6250 L1101 7o .0864
7500 0744 .80960 L0808
L8750 .0425 . .8810 0378
1, 4t o .9511 .0224
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0 THE LIFT DISTRIBUTIONS OF TABLE 4
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CORRESPONDING

WITHE THE PRESCRIBED ANGLE OF ATTACK o
Present solution i Pegrson solution
¥ a(y) aly) v ay) | oly) s
9] 1.157 1.0 1,043 | 1.0
» 125 238 1.0 .1564 947 | 1.0
.250 | 1,008 1.0 .3090} 1.058 | 1.0
« 375 1.100 1,0 4540 734 | -0
+.500 —. 023 9] .48390 .B805 | —
.625 —-. 058 0] .5225 . 288 0
. 750 . 029 0 .58%78| —.010 4 O
875 . 020 0 L7071 L0863 | O
1.000 { —.036 0 .8090} .0211]0
.8910 .046 | O
.9511° « 044 0

Cmt. A -

TABLE 6.— NUMERIGAL DATA FOR

WING WITH OUI<OUT

i - 1
y P(y) B(¥) mop °1 T °1
0 1.70627 0.44512 | 0.9339 | 0.9339
L1256 | 1.59911 . 42638 .9234 .9234
. . . . L9760
256 | 1.13364 .34298 L9960 {.7320
.375 .62280 .05355 | 1.0240 .7680
.500 .37225 . 02069 1.0272 L7704
.625 .20701 —.00098 .9781 L7336
W 750 .09497 —.01568 .8965 6724
‘ .8%75 .02492 —.02486 L7659 5744
1 0 —~.028153 0 ' o]
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Figure 1.- The approximeting functions y32%/1-y® and y®log(1+/1-y2/li¥|) .
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(a) Constent angle of attack (o= cp).
Figure 38 (a t0 ¢).- Lift distributions for a rectangular wing (b/c = m).
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(b) Symmetriomlly linear angle of attack (= ap |¥yl)}.
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(o) Quadratic angle of attack (o = apy3).
Figure 3.- (Ooncluded).
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Figs. 3,4
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Figure 3.— Qhord variation of tapered wing used in example.
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Figure 4.- Lift diefribution for a tapered wing with rounded tips and partial-span

flaps (b3/8 = 10)}.
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¢ Figure 5.- Comparlson of angle of attack oorresponding to 1ift dietributions of
figure 4 with prescribed angle of atiack
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Figure 6.- Lift distribution for reotangular wing with cutout (b/epay = m, bz/s =



